1234
  • RSS
  • Facebook
  • Twitter
Marine Notes Online will be updated soon ! It's Under Maintenance of uploading Marine Notes and Books. Thanks for encouraging and Launched New Money Back guarantee if you don't receive the Postage Material Cd/DVD. ! Send your feedback through Order form too. Help Desk.

HANDBOOK ELECTRICAL ENGINEERING CATHODIC PROTECTION

HANDBOOK ELECTRICAL ENGINEERING CATHODIC PROTECTION

HANDBOOK ELECTRICAL ENGINEERING CATHODIC PROTECTION (marinenotesonline.blogspot.com)

ELECTRICAL ENGINEERING CATHODIC PROTECTION
CONTENTS
Page
Section 1 INTRODUCTION
1.1 Scope. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Cancellation. . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Related Technical Documents. . . . . . . . . . . . . . . . . 1
Section 2 CATHODIC PROTECTION CONCEPTS
2.1 Corrosion as an Electrochemical Process. . . . . . . . . . . 3
2.1.1 Driving Force. . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 The Electrochemical Cell. . . . . . . . . . . . . . . . . . . 3
2.1.2.1 Components of the Electrochemical Cell. . . . . . . . . . . . 3
2.1.2.2 Reactions in an Electrochemical Cell. . . . . . . . . . . . . 3
2.2 The Electrochemical Basis for Cathodic
Protection. . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.1 Potentials Required for Cathodic Protection. . . . . . . . . 4
2.3 Practical Application of Cathodic Protection. . . . . . . . . 5
2.3.1 When Cathodic Protection Should Be Considered. . . . . . . . 5
2.3.1.1 Where Feasible. . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.1.2 When Indicated By Experience. . . . . . . . . . . . . . . . . 5
2.3.1.3 As Required By Regulation. . . . . . . . . . . . . . . . . . 5
2.3.2 Functional Requirements for Cathodic Protection . . . . . . . 8
2.3.2.1 Continuity. . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2.2 Electrolyte. . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2.3 Source of Current. . . . . . . . . . . . . . . . . . . . . . 8
2.3.2.4 Connection to Structure. . . . . . . . . . . . . . . . . . . 8
2.4 Sacrificial Anode Systems. . . . . . . . . . . . . . . . . . 8
2.4.1 Anode Materials. . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Connection to Structure. . . . . . . . . . . . . . . . . . . 10
2.4.3 Other Requirements. . . . . . . . . . . . . . . . . . . . . . 10
2.5 Impressed Current Systems. . . . . . . . . . . . . . . . . . 10
2.5.1 Anode Materials. . . . . . . . . . . . . . . . . . . . . . . 10
2.5.2 Direct Current Power Source. . . . . . . . . . . . . . . . . 10
2.5.3 Connection to Structure. . . . . . . . . . . . . . . . . . . 10
2.5.4 Other Requirements. . . . . . . . . . . . . . . . . . . . . . 11
Section 3 CRITERIA FOR CATHODIC PROTECTION
3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Electrical Criteria. . . . . . . . . . . . . . . . . . . . . 13
3.3 Interpretation of Structure-to-Electrolyte
Potential Readings. . . . . . . . . . . . . . . . . . . . . . 13
3.3.1 National Association of Corrosion Engineers
(NACE)Standard RP-01-69. . . . . . . . . . . . . . . . . . . 13
3.3.1.1 Criteria for Steel. . . . . . . . . . . . . . . . . . . . . . 15
3.3.1.2 Criteria for Aluminum. . . . . . . . . . . . . . . . . . . . 15
3.3.1.3 Criteria for Copper. . . . . . . . . . . . . . . . . . . . . 15
3.3.1.4 Criteria for Dissimilar Metal Structures. . . . . . . . . . . 15
3.3.2 Other Electrical Criteria. . . . . . . . . . . . . . . . . . 15
3.3.2.1 Criteria for Lead. . . . . . . . . . . . . . . . . . . . . . 16
3.3.2.2 NACE RP-02-85. . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Failure Rate Analysis. . . . . . . . . . . . . . . . . . . . 16
3.5 Nondestructive Testing of Facility. . . . . . . . . . . . . . 16
3.5.1 Visual Analysis. . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Consequences of Underprotection. . . . . . . . . . . . . . . 17
3.7 Consequences of Overprotection. . . . . . . . . . . . . . . . 18
3.7.1 Coating Disbondment. . . . . . . . . . . . . . . . . . . . . 18
3.7.2 Hydrogen Embrittlement. . . . . . . . . . . . . . . . . . . . 18
Section 4 CATHODIC PROTECTION SYSTEM DESIGN PRINCIPLES
4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 General Design Procedures. . . . . . . . . . . . . . . . . . 19
4.2.1 Drawings and Specifications. . . . . . . . . . . . . . . . . 19
4.2.1.1 Drawings and Specifications for the Structure to
be Protected. . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.1.2 Site Drawings. . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.2 Field Surveys. . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2.1 Water Analysis. . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2.2 Soil Characteristics. . . . . . . . . . . . . . . . . . . . . 20
4.2.2.3 Current Requirement Tests. . . . . . . . . . . . . . . . . . 21
4.2.2.4 Location of Other Structures in the Area. . . . . . . . . . . 22
4.2.2.5 Availability of ac Power. . . . . . . . . . . . . . . . . . . 22
4.2.3 Current Requirements. . . . . . . . . . . . . . . . . . . . . 22
4.2.4 Choice of Sacrificial or Impressed Current
System. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.5 Basic Design Procedure for Sacrificial Anode
Systems. . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.6 Basic Design Procedure for Impressed Current
Systems. . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.6.1 Total Current Determination. . . . . . . . . . . . . . . . . 24
4.2.6.2 Total Resistance Determination. . . . . . . . . . . . . . . . 26
4.2.6.3 Voltage and Rectifier Determination. . . . . . . . . . . . . 27
4.2.7 Analysis of Design Factors. . . . . . . . . . . . . . . . . . 28
4.3 Determination of Field Data. . . . . . . . . . . . . . . . . 28
4.3.1 Determination of Electrolyte Resistivity . . . . . . . . . . 29
4.3.1.1 In Soils. . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.1.2 Liquids. . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Chemical Analysis of the Environment . . . . . . . . . . . . 31
4.3.2.1 pH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.3 Coating Conductance. . . . . . . . . . . . . . . . . . . . . 31
4.3.3.1 Short Line Method. . . . . . . . . . . . . . . . . . . . . . 33
4.3.3.2 Long Line Method. . . . . . . . . . . . . . . . . . . . . . . 33
4.3.4 Continuity Testing. . . . . . . . . . . . . . . . . . . . . . 35
4.3.4.1 Method 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.4.2 Method 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.4.3 Method 3. . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.5 Insulation Testing. . . . . . . . . . . . . . . . . . . . . . 35
4.3.5.1 Buried Structures. . . . . . . . . . . . . . . . . . . . . . 35
4.3.5.2 Aboveground Structures. . . . . . . . . . . . . . . . . . . . 38
4.4 Corrosion Survey Checklist. . . . . . . . . . . . . . . . . . 38
Section 5 PRECAUTIONS FOR CATHODIC PROTECTION SYSTEM DESIGN
5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Excessive Currents and Voltages. . . . . . . . . . . . . . . 39
5.2.1 Interference. . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.1.1 Detecting Interference. . . . . . . . . . . . . . . . . . . . 41
5.2.1.2 Control of Interference - Anode Bed Location. . . . . . . . . 43
5.2.1.3 Control of Interference - Direct Bonding. . . . . . . . . . . 43
5.2.1.4 Control of Interference - Resistive Bonding. . . . . . . . . 45
5.2.1.5 Control of Interference - Sacrificial Anodes. . . . . . . . . 47
5.2.2 Effects of High Current Density. . . . . . . . . . . . . . . 47
5.2.3 Effects of Electrolyte pH. . . . . . . . . . . . . . . . . . 47
5.3 Hazards Associated with Cathodic Protection. . . . . . . . . 49
5.3.1 Explosive Hazards. . . . . . . . . . . . . . . . . . . . . . 49
5.3.2 Bonding for Electrical Safety. . . . . . . . . . . . . . . . 49
5.3.3 Induced Alternating Currents. . . . . . . . . . . . . . . . . 50
Section 6 IMPRESSED CURRENT SYSTEM
6.1 Advantages of Impressed Current Cathodic
Protection Systems. . . . . . . . . . . . . . . . . . . . . . 53
6.2 Determination of Circuit Resistance. . . . . . . . . . . . . 53
6.2.1 Anode-to-Electrolyte Resistance. . . . . . . . . . . . . . . 53
6.2.1.1 Effect on System Design and Performance. . . . . . . . . . . 53
6.2.1.2 Calculation of Anode-to-Electrolyte Resistance . . . . . . . 54
6.2.1.3 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . 54
6.2.1.4 Simplified Expressions for Common Situations. . . . . . . . . 55
6.2.1.5 Field Measurement. . . . . . . . . . . . . . . . . . . . . . 57
6.2.1.6 Effect of Backfill. . . . . . . . . . . . . . . . . . . . . . 58
6.2.2 Structure-to-Electrolyte Resistance. . . . . . . . . . . . . 59
6.2.3 Connecting Cable Resistance. . . . . . . . . . . . . . . . . 59
6.2.4 Resistance of Connections and Splices. . . . . . . . . . . . 59
6.3 Determination of Power Supply Requirements. . . . . . . . . . 59
6.4 Selection of Power Supply Type. . . . . . . . . . . . . . . . 60
6.4.1 Rectifiers. . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4.2 Thermoelectric Generators. . . . . . . . . . . . . . . . . . 60
6.4.3 Solar. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4.4 Batteries. . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4.5 Generators. . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.5 Rectifier Selection. . . . . . . . . . . . . . . . . . . . . 60
6.5.1 Rectifier Components. . . . . . . . . . . . . . . . . . . . . 61
6.5.1.1 Transformer Component. . . . . . . . . . . . . . . . . . . . 61
6.5.1.2 Rectifying Elements. . . . . . . . . . . . . . . . . . . . . 61
6.5.1.3 Overload Protection. . . . . . . . . . . . . . . . . . . . . 61
6.5.1.4 Meters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.5.2 Standard Rectifier Types . . . . . . . . . . . . . . . . . . 63
6.5.2.1 Single-Phase Bridge. . . . . . . . . . . . . . . . . . . . . 63
6.5.2.2 Single-Phase Center Tap. . . . . . . . . . . . . . . . . . . 63
6.5.2.3 Three-Phase Bridge. . . . . . . . . . . . . . . . . . . . . . 63
6.5.2.4 Three-Phase Wye. . . . . . . . . . . . . . . . . . . . . . . 65
6.5.2.5 Special Rectifier Types . . . . . . . . . . . . . . . . . . . 65
6.5.3 Rectifier Selection and Specifications. . . . . . . . . . . . 68
6.5.3.1 Available Features. . . . . . . . . . . . . . . . . . . . . . 69
6.5.3.2 Air Cooled Versus Oil Immersed. . . . . . . . . . . . . . . . 69
6.5.3.3 Selecting ac Voltage. . . . . . . . . . . . . . . . . . . . . 70
6.5.3.4 dc Voltage and Current Output. . . . . . . . . . . . . . . . 70
6.5.3.5 Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.5.3.6 Explosion Proof Rectifiers. . . . . . . . . . . . . . . . . . 70
6.5.3.7 Lightning Arresters. . . . . . . . . . . . . . . . . . . . . 71
6.5.3.8 Selenium Versus Silicon Stacks. . . . . . . . . . . . . . . . 71
6.5.3.9 Other Options. . . . . . . . . . . . . . . . . . . . . . . . 71
6.5.3.10 Rectifier Alternating Current Rating. . . . . . . . . . . . . 71
6.6 Anodes for Impressed Current Systems. . . . . . . . . . . . . 73
6.6.1 Graphite Anodes. . . . . . . . . . . . . . . . . . . . . . . 74
6.6.1.1 Specifications. . . . . . . . . . . . . . . . . . . . . . . . 74
6.6.1.2 Available Sizes. . . . . . . . . . . . . . . . . . . . . . . 74
6.6.1.3 Characteristics. . . . . . . . . . . . . . . . . . . . . . . 77
6.6.1.4 Operation. . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.6.2 High Silicon Cast Iron. . . . . . . . . . . . . . . . . . . . 78
6.6.3 High Silicon Chromium Bearing Cast Iron
(HSCBCI). . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.6.3.1 Specifications. . . . . . . . . . . . . . . . . . . . . . . . 78
6.6.3.2 Available Sizes. . . . . . . . . . . . . . . . . . . . . . . 79
6.6.3.3 Operation. . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.6.4 Aluminum. . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.6.5 Platinum. . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.6.6 Platinized Anodes. . . . . . . . . . . . . . . . . . . . . . 79
6.6.6.1 Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.6.6.2 Operation. . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.6.7 Alloyed Lead. . . . . . . . . . . . . . . . . . . . . . . . . 91
6.7 Other System Components. . . . . . . . . . . . . . . . . . . 91
6.7.1 Connecting Cables. . . . . . . . . . . . . . . . . . . . . . 91
6.7.1.1 Factors to be Considered. . . . . . . . . . . . . . . . . . . 91
6.7.1.2 Insulation. . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.7.1.3 Recommended Cables for Specific Applications. . . . . . . . . 93
6.7.1.4 Economic Wire Size. . . . . . . . . . . . . . . . . . . . . . 93
6.7.2 Wire Splices and Connections. . . . . . . . . . . . . . . . . 94
6.7.3 Test Stations. . . . . . . . . . . . . . . . . . . . . . . . 96
6.7.4 Bonds. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.7.5 Insulating Joints. . . . . . . . . . . . . . . . . . . . . . 96
Section 7 SACRIFICIAL ANODE SYSTEM DESIGN
7.1 Theory of Operation. . . . . . . . . . . . . . . . . . . . . 113
7.1.1 Advantages of Sacrificial Anode Cathodic
Protection Systems. . . . . . . . . . . . . . . . . . . . . . 113
7.1.2 Disadvantages of Sacrificial Anode Cathodic
Protection Systems. . . . . . . . . . . . . . . . . . . . . . 113
7.2 Sacrificial Anode Cathodic Protection System
DesignProcedures. . . . . . . . . . . . . . . . . . . . . . . 113
7.3 Determination of Current Required for
Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.4 Determination of Anode Output. . . . . . . . . . . . . . . . 114
7.4.1 Simplified Method for Common Situations. . . . . . . . . . . 114
7.4.2 Determination of Output Using
Anode-to-Electrolyte Resistance. . . . . . . . . . . . . . . 114
7.4.2.1 Calculation of Anode-to-Electrolyte Resistance. . . . . . . . 114
7.4.2.2 Determination of Structure-to-Electrolyte
Resistance. . . . . . . . . . . . . . . . . . . . . . . . . 115
7.4.2.3 Connecting Cable Resistance. . . . . . . . . . . . . . . . . 115
7.4.2.4 Resistance of Connections and Splices. . . . . . . . . . . . 115
7.4.2.5 Total Circuit Resistance. . . . . . . . . . . . . . . . . . . 115
7.4.2.6 Anode-to-Structure Potential. . . . . . . . . . . . . . . . . 115
7.4.2.7 Anode Output Current. . . . . . . . . . . . . . . . . . . . . 115
7.4.3 Field Measurement of Anode Output. . . . . . . . . . . . . . 116
7.5 Determination of Number of Anodes Required. . . . . . . . . . 116
7.6 Determination of Anode Life. . . . . . . . . . . . . . . . . 116
7.7 Seasonal Variation in Anode Output. . . . . . . . . . . . . . 117
7.8 Sacrificial Anode Materials . . . . . . . . . . . . . . . . . 117
7.8.1 Magnesium. . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.8.1.1 Composition. . . . . . . . . . . . . . . . . . . . . . . . . 118
7.8.1.2 Anode Efficiency. . . . . . . . . . . . . . . . . . . . . . . 118
7.8.1.3 Potentials. . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.8.1.4 Sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.8.1.5 Current Output. . . . . . . . . . . . . . . . . . . . . . . . 119
7.8.1.6 Backfill. . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.8.2 Zinc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.8.2.1 Composition. . . . . . . . . . . . . . . . . . . . . . . . . 125
7.8.2.2 Anode Efficiency. . . . . . . . . . . . . . . . . . . . . . . 125
7.8.2.3 Potentials. . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.8.2.4 Sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.8.2.5 Current Output. . . . . . . . . . . . . . . . . . . . . . . . 126
7.8.2.6 Backfill. . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.8.3 Aluminum. . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.8.3.1 Composition. . . . . . . . . . . . . . . . . . . . . . . . . 127
7.8.3.2 Anode Efficiency. . . . . . . . . . . . . . . . . . . . . . . 127
7.8.3.3 Potentials. . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.8.3.4 Sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.8.3.5 Current Output. . . . . . . . . . . . . . . . . . . . . . . . 127
7.9 Other System Components . . . . . . . . . . . . . . . . . . . 127
7.9.1 Connecting Wires. . . . . . . . . . . . . . . . . . . . . . . 127
7.9.1.1 Determination of Connecting Wire Size and Type. . . . . . . . 133
7.9.2 Connections and Splices. . . . . . . . . . . . . . . . . . . 134
7.9.3 Bonds and Insulating Joints. . . . . . . . . . . . . . . . . 134
7.9.4 Test Station Location and Function. . . . . . . . . . . . . . 134
7.9.5 Backfill. . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Section 8 TYPICAL CATHODIC PROTECTION
8.1 Diagrams of Cathodic Protection Systems. . . . . . . . . . . 137
Section 9 CATHODIC PROTECTION SYSTEM DESIGN EXAMPLES
9.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 155
9.2 Elevated Steel Water Tank. . . . . . . . . . . . . . . . . . 155
9.2.1 Design Data . . . . . . . . . . . . . . . . . . . . . . . . . 156
9.2.2 Computations . . . . . . . . . . . . . . . . . . . . . . . . 156
9.3 Elevated Water Tank (Where Ice is Expected). . . . . . . . . 173
9.3.1 Design Data . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.3.2 Computations . . . . . . . . . . . . . . . . . . . . . . . . 176
9.4 Steel Gas Main. . . . . . . . . . . . . . . . . . . . . . . . 177
9.4.1 Design Data . . . . . . . . . . . . . . . . . . . . . . . . . 180
9.4.2 Computations . . . . . . . . . . . . . . . . . . . . . . . . 180
9.5 Gas Distribution System. . . . . . . . . . . . . . . . . . . 184
9.5.1 Design Data . . . . . . . . . . . . . . . . . . . . . . . . . 185
9.5.2 Computations . . . . . . . . . . . . . . . . . . . . . . . . 185
9.6 Black Iron, Hot Water Storage Tank. . . . . . . . . . . . . . 187
9.6.1 Design Data . . . . . . . . . . . . . . . . . . . . . . . . . 188
9.6.2 Computations . . . . . . . . . . . . . . . . . . . . . . . . 188
9.7 Underground Steel Storage Tank. . . . . . . . . . . . . . . . 190
9.7.1 Design Data . . . . . . . . . . . . . . . . . . . . . . . . . 190
9.7.2 Computations . . . . . . . . . . . . . . . . . . . . . . . . 192
9.8 Heating Distribution System. . . . . . . . . . . . . . . . . 192
9.8.1 Design Data . . . . . . . . . . . . . . . . . . . . . . . . . 192
9.8.2 Computations . . . . . . . . . . . . . . . . . . . . . . . . 193
9.8.3 Groundbed Design . . . . . . . . . . . . . . . . . . . . . . 194
9.8.4 Rectifier Location. . . . . . . . . . . . . . . . . . . . . . 195
9.9 Aircraft Multiple Hydrant Refueling System. . . . . . . . . . 195
9.9.1 Design Data . . . . . . . . . . . . . . . . . . . . . . . . . 195
9.9.2 Computations. . . . . . . . . . . . . . . . . . . . . . . . . 196
9.10 Steel Sheet Piling in Seawater (Galvanic nodes). . . . . . . 199
9.10.1 Design Data . . . . . . . . . . . . . . . . . . . . . . . . . 199
9.10.2 Computations . . . . . . . . . . . . . . . . . . . . . . . . 201
9.11 Steel Sheet Piling in Seawater (Impressed
Current
9.11.1 Design Data. . . . . . . . . . . . . . . . . . . . . . . . . 203
9.11.2 Computations . . . . . . . . . . . . . . . . . . . . . . . . 203
9.12 Steel H Piling in Seawater (Galvanic Anodes). . . . . . . . . 207
9.12.1 Design Data . . . . . . . . . . . . . . . . . . . . . . . . . 208
9.12.2 Computations . . . . . . . . . . . . . . . . . . . . . . . . 208
9.13 Steel H Piling in Seawater (Impressed Current). . . . . . . . 210
9.13.1 Design Data . . . . . . . . . . . . . . . . . . . . . . . . . 210
9.13.2 Computations . . . . . . . . . . . . . . . . . . . . . . . . 210
Section 10 INSTALLATION AND CONSTRUCTION PRACTICES
10.1 Factors to Consider. . . . . . . . . . . . . . . . . . . . . 213
10.2 Planning of Construction. . . . . . . . . . . . . . . . . . . 213
10.3 Pipeline Coating. . . . . . . . . . . . . . . . . . . . . . . 213
10.3.1 Over-the-Ditch Coating. . . . . . . . . . . . . . . . . . . . 213
10.3.2 Yard Applied Coating. . . . . . . . . . . . . . . . . . . . . 213
10.3.3 Joint and Damage Repair. . . . . . . . . . . . . . . . . . . 214
10.3.4 Inspection. . . . . . . . . . . . . . . . . . . . . . . . . . 214
10.4 Coatings for Other Structures. . . . . . . . . . . . . . . . 214
10.5 Pipeline Installation. . . . . . . . . . . . . . . . . . . . 214
10.5.1 Casings. . . . . . . . . . . . . . . . . . . . . . . . . . . 214
10.5.2 Foreign Pipeline Crossings. . . . . . . . . . . . . . . . . . 215
10.5.3 Insulating Joints. . . . . . . . . . . . . . . . . . . . . . 215
10.5.4 Bonds. . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
10.6 Electrical Connections. . . . . . . . . . . . . . . . . . . . 216
10.7 Test Stations. . . . . . . . . . . . . . . . . . . . . . . . 216
10.8 Sacrificial Anode Installation. . . . . . . . . . . . . . . . 216
10.8.1 Vertical. . . . . . . . . . . . . . . . . . . . . . . . . . . 216
10.8.2 Horizontal. . . . . . . . . . . . . . . . . . . . . . . . . . 217
10.9 Impressed Current Anode Installation. . . . . . . . . . . . . 217
10.9.1 Vertical. . . . . . . . . . . . . . . . . . . . . . . . . . . 219
10.9.2 Horizontal. . . . . . . . . . . . . . . . . . . . . . . . . . 219
10.9.3 Deep Anode Beds. . . . . . . . . . . . . . . . . . . . . . . 219
10.9.4 Other Anode Types. . . . . . . . . . . . . . . . . . . . . . 225
10.9.5 Connections. . . . . . . . . . . . . . . . . . . . . . . . . 225
10.10 Impressed Current Rectifier Installation. . . . . . . . . . . 225
Section 11 SYSTEM CHECKOUT AND INITIAL ADJUSTMENTS
11.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 229
11.2 Initial Potential Survey. . . . . . . . . . . . . . . . . . . 229
11.3 Detection and Correction of Interference. . . . . . . . . . . 229
11.4 Adjustment of Impressed Current Systems. . . . . . . . . . . 229
11.4.1 Uneven Structure-To-Electrolyte Potentials. . . . . . . . . . 229
11.4.2 Rectifier Voltage and Current Capacity. . . . . . . . . . . . 230
11.5 Adjustment of Sacrificial Anode Systems. . . . . . . . . . . 230
11.5.1 Low Anode Current Levels. . . . . . . . . . . . . . . . . . . 230
11.5.2 Inadequate Protection at Designed Current Levels . . . . . . 230
Section 12 MAINTAINING CATHODIC PROTECTION
12.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 231
12.2 Required Periodic Monitoring and Maintenance. . . . . . . . . 231
12.3 Design Data Required for System Maintenance. . . . . . . . . 231
12.3.1 Drawings. . . . . . . . . . . . . . . . . . . . . . . . . . . 231
12.3.2 System Data. . . . . . . . . . . . . . . . . . . . . . . . . 231
12.3.2.1 Design Potentials. . . . . . . . . . . . . . . . . . . . . . 231
12.3.2.2 Current Output. . . . . . . . . . . . . . . . . . . . . . . . 231
12.3.2.3 System Settings and Potential Readings. . . . . . . . . . . . 231
12.3.2.4 Rectifier Instructions. . . . . . . . . . . . . . . . . . . . 232
12.4 Basic Maintenance Requirements. . . . . . . . . . . . . . . . 232
12.5 Guidance for Maintenance . . . . . . . . . . . . . . . . . . 232
12.5.1 Agency Maintenance and Operations Manuals. . . . . . . . . . 232
12.5.2 DOT Regulations. . . . . . . . . . . . . . . . . . . . . . . 235
12.5.3 NACE Standards. . . . . . . . . . . . . . . . . . . . . . . . 235
Section 13 ECONOMIC ANALYSIS
13.1 Importance of Economic Analysis. . . . . . . . . . . . . . . 237
13.2 Economic Analysis Process. . . . . . . . . . . . . . . . . . 237
13.2.1 Define the Objective. . . . . . . . . . . . . . . . . . . . . 237
13.2.2 Generate Alternatives. . . . . . . . . . . . . . . . . . . . 238
13.2.3 Formulate Assumptions. . . . . . . . . . . . . . . . . . . . 238
13.2.4 Determine Costs and Benefits. . . . . . . . . . . . . . . . . 238
13.2.4.1 Costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
13.2.4.2 Benefits. . . . . . . . . . . . . . . . . . . . . . . . . . . 239
13.2.5 Compare Costs and Benefits and Rank
Alternatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
13.2.6 Perform Sensitivity Analysis. . . . . . . . . . . . . . . . . 239
13.3 Design of Cathodic Protection Systems. . . . . . . . . . . . 239
13.4 Economic Analysis - Example 1 . . . . . . . . . . . . . . . . 240
13.4.1 Objective. . . . . . . . . . . . . . . . . . . . . . . . . . 240
13.4.2 Alternatives . . . . . . . . . . . . . . . . . . . . . . . . 240
13.4.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 240
13.4.4 Cost/Benefit Analysis . . . . . . . . . . . . . . . . . . . . 240
13.4.4.1 Cost - Alternative 1--Steel Line Without
Cathodic Protection. . . . . . . . . . . . . . . . . . . . . 240
13.4.4.2 Cost - Alternative 2--Steel Line with Cathodic
Protection. . . . . . . . . . . . . . . . . . . . . . . . . . 242
13.4.4.3 Cost - Alternative 3--Plastic Line. . . . . . . . . . . . . . 242
13.4.4.4 Benefits. . . . . . . . . . . . . . . . . . . . . . . . . . . 243
13.4.5 Compare Costs/Benefits . . . . . . . . . . . . . . . . . . . 243
13.5 Economic Analysis - Example 2 . . . . . . . . . . . . . . . . 243
13.5.1 Objective. . . . . . . . . . . . . . . . . . . . . . . . . . 243
13.5.2 Alternative . . . . . . . . . . . . . . . . . . . . . . . . . 243
13.5.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 243
13.5.4 Cost/Benefit Analysis . . . . . . . . . . . . . . . . . . . . 244
13.5.4.1 Cost - Alternative 1--Steel Line Without
Cathodic Protection. . . . . . . . . . . . . . . . . . . . . 244
13.5.4.2 Cost - Alternative 2--Steel Line With Cathodic
Protection. . . . . . . . . . . . . . . . . . . . . . . . . . 245
13.5.4.3 Benefits. . . . . . . . . . . . . . . . . . . . . . . . . . . 246
13.5.5 Compare Costs/Benefits . . . . . . . . . . . . . . . . . . . 246
13.5.6 Conclusions and Recommendations. . . . . . . . . . . . . . . 247
13.6 Economic Analysis - Example 3 . . . . . . . . . . . . . . . . 247
13.6.1 Objective. . . . . . . . . . . . . . . . . . . . . . . . . . 247
13.6.2 Alternatives . . . . . . . . . . . . . . . . . . . . . . . . 247
13.6.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 247
13.6.4 Cost/Benefit Analysis . . . . . . . . . . . . . . . . . . . . 247
13.6.4.1 Cost - Alternative 1--Impressed Current Cathodic
Protection. . . . . . . . . . . . . . . . . . . . . . . . . 247
13.6.4.2 Cost - Alternative 2--Galvanic Anode System. . . . . . . . . 248
13.6.5 Compare Costs/Benefits . . . . . . . . . . . . . . . . . . . 249
13.7 Economic Analysis - Example 4 . . . . . . . . . . . . . . . . 249
13.7.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . 249
13.7.2 Alternatives . . . . . . . . . . . . . . . . . . . . . . . . 249
13.7.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 249
13.7.4 Cost/Benefit Analysis . . . . . . . . . . . . . . . . . . . . 249
13.7.4.1 Cost - Alternative 1--Cathodic Protection System
Maintenance Continued. . . . . . . . . . . . . . . . . . . 249
13.7.4.2 Cost - Alternative 2--Cathodic Protection System
Maintenance Discontinued. . . . . . . . . . . . . . . . . . 250
13.7.5 Compare Benefits and Costs . . . . . . . . . . . . . . . . . 251
13.8 Economic Analysis Goal. . . . . . . . . . . . . . . . . . . . 251
Section 14 CORROSION COORDINATING COMMITTEE PARTICIPATION
14.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 253
14.2 Functions of Corrosion Coordinating Committees. . . . . . . . 253
14.3 Operation of the Committees. . . . . . . . . . . . . . . . . 253
14.4 Locations of Committees. . . . . . . . . . . . . . . . . . . 253
APPENDIX
APPENDIX A UNDERGROUND CORROSION SURVEY CHECKLIST . . . . . . . . . . . 255
B ECONOMIC LIFE GUIDELINES . . . . . . . . . . . . . . . . . . 265
C PROJECT YEAR DISCOUNT FACTORS . . . . . . . . . . . . . . . . 267
D PRESENT VALUE FORMULAE . . . . . . . . . . . . . . . . . . . 269
E DOT REGULATIONS . . . . . . . . . . . . . . . . . . . . . . . 271
Figure 1 The Electrochemical Cell . . . . . . . . . . . . . . . . . . 6
2 Corrosion Cell - Zinc and Platinum
in Hydrochloric Acid . . . . . . . . . . . . . . . . . . . 6
3 Cathodic Protection Cell . . . . . . . . . . . . . . . . . . 7
4 Hydraulic Analogy of Cathodic Protection . . . . . . . . . . 7
5 Sacrificial Anode Cathodic Protection/Impressed
Current Cathodic Protection . . . . . . . . . . . . . . . . 9
6 Structure-to Electrolyte Potential Measurement . . . . . . . 14
7 Failure Rate Versus Time . . . . . . . . . . . . . . . . . . 17
8 Temporary Cathodic Protection System for
Determining Current Requirements . . . . . . . . . . . . . 23
9 4-Pin Soil Resistivity Measurement . . . . . . . . . . . . . 30
10 Soil Box for Determination of Resistivity . . . . . . . . . . 30
11 pH Meter . . . . . . . . . . . . . . . . . . . . . . . . . . 32
12 Antimony Electrode Potential Versus pH . . . . . . . . . . . 32
13 Coating Conductance - Short Line Method . . . . . . . . . . . 34
14 Coating Conductance - Long Line Method . . . . . . . . . . . 34
15 Continuity Testing - Potential Method . . . . . . . . . . . . 36
16 Continuity Testing - Potential Drop Method . . . . . . . . . 36
17 Continuity Testing - Pipe Locator Method . . . . . . . . . . 37
18 Insulation Testing - Two-Wire Test Station . . . . . . . . . 37
19 Interference from Impressed Current
Cathodic Protection System . . . . . . . . . . . . . . . . 40
20 Interference Due to Potential Gradients . . . . . . . . . . . 41
21 Interference Testing . . . . . . . . . . . . . . . . . . . . 42
22 Plot of Potentials from Interference Test . . . . . . . . . . 42
23 Measurement of Current Flow in Structure . . . . . . . . . . 44
24 Correction of Interferencce - Direct Bonding . . . . . . . . 44
25 Correction of Interference - Resistive Bonding . . . . . . . 45
26 Effects of Bonding on Interference Test
Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
27 Bonding for Continuity . . . . . . . . . . . . . . . . . . . 48
28 Control of Interference - Sacrificial Anode . . . . . . . . . 48
29 Interference Due to Cathodic Protection of
Quaywall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
30 Correction of Interference - Bonding . . . . . . . . . . . . 51
31 Equavalent Cathodic Protection Circuit . . . . . . . . . . . 54
32 Single-Phase - Full-Wave Bridge Rectifier . . . . . . . . . . 62
33 Full-Wave Rectified Current . . . . . . . . . . . . . . . . . 64
34 Single-Phase - Center Tap Circuit . . . . . . . . . . . . . . 64
35 Three-Phase Bridge Circuit . . . . . . . . . . . . . . . . . 65
36 Three-Phase Wye Circuit . . . . . . . . . . . . . . . . . . . 66
37 Half-Wave Rectified Current . . . . . . . . . . . . . . . . . 66
38 Constant Current Rectifier . . . . . . . . . . . . . . . . . 67
39 Constant Potential Rectifier . . . . . . . . . . . . . . . . 67
40 Multicircuit Constant Current Rectifier . . . . . . . . . . . 68
41 Efficiency Versus Voltage - Selenium Stacks . . . . . . . . . 72
42 Efficiency Versus Voltage - Silicon Stacks . . . . . . . . . 73
43 Anode-to-Cable Connection - Graphite Anode . . . . . . . . . 75
44 Center Connected Graphite Anode . . . . . . . . . . . . . . . 76
45 Duct Anode . . . . . . . . . . . . . . . . . . . . . . . . . 83
46 Button Anode . . . . . . . . . . . . . . . . . . . . . . . . 83
47 Bridge Deck Anode - Type I . . . . . . . . . . . . . . . . . 84
48 Bridge Deck Anode - Type II . . . . . . . . . . . . . . . . . 85
49 Tubular Anode . . . . . . . . . . . . . . . . . . . . . . . . 86
50 Anode to Cable Connection - Epoxy Seal . . . . . . . . . . . 87
51 Anode to Cable Connection - Teflon Seal . . . . . . . . . . . 88
52 Center Connected High Silicon Chromium
Bearing Cast Iron Anode . . . . . . . . . . . . . . . . . . 89
53 Typical Platinized Anode . . . . . . . . . . . . . . . . . . 90
54 Flush-Mounted Potential Test Station . . . . . . . . . . . . 97
55 Soil Contact Test Station . . . . . . . . . . . . . . . . . . 98
56 IR Drop Test Station . . . . . . . . . . . . . . . . . . . . 99
57 Insulating Flange Test Station (Six-Wire) . . . . . . . . . . 100
58 Wiring for Casing Isolation Test Station . . . . . . . . . . 101
59 Bond Test Station . . . . . . . . . . . . . . . . . . . . . . 101
60 Anode Balancing Resistors . . . . . . . . . . . . . . . . . . 102
61 Bonding of a Dresser-Style Coupling . . . . . . . . . . . . . 103
62 Bonding Methods for Cast Iron Bell-and-Spigot
Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
63 Isolating a Protected Line from an Unprotected
Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
64 Electrical Bond . . . . . . . . . . . . . . . . . . . . . . . 106
65 Thermosetting-Resin Pipe Connection . . . . . . . . . . . . . 106
66 Clamp Type Bonding Joint . . . . . . . . . . . . . . . . . . 107
67 Underground Splice . . . . . . . . . . . . . . . . . . . . . 108
68 Welded Type Bonding Joint for Slip-On
Pipe Installed Aboveground . . . . . . . . . . . . . . . . 109
69 Test Box for an Insulating Fitting . . . . . . . . . . . . . 110
70 Steel Insulating Joint Details for Flanged
Pipe Installed Below Grade . . . . . . . . . . . . . . . . 111
71 Steel Insulating Joint Details for Aboveground
Flanged Pipe . . . . . . . . . . . . . . . . . . . . . . . 112
72 Insulating Joint Details for Screwed Pipe
Connections . . . . . . . . . . . . . . . . . . . . . . . . 112
73 Efficiency Versus Current Density - Magnesium
Anodes . . . . . . . . . . . . . . . . . . . . . . . . . . 118
74 Aluminum Alloy Bracelet Anodes . . . . . . . . . . . . . . . 133
75 Current-Potential Test Station . . . . . . . . . . . . . . . 135
76 Typical Building Underground Heat & Water Lines . . . . . . . 138
77 Impressed Current Point Type Cathodic Protection
for Aircraft Hydrant Refueling System . . . . . . . . . . . . 138
78 Galvanic Anode Type Cathodic Protection for
Coated Underground Sewage Lift Station . . . . . . . . . . . 139
79 Zinc Anode on Reinforced Concrete Block . . . . . . . . . . . 140
80 Radiant Heat or Snow-Melting Piping . . . . . . . . . . . . . 141
81 Cathodic Protection of Foundation Piles . . . . . . . . . . . 142
82 Impressed Current Cathodic Protection for
Existing On-Grade Storage Tank . . . . . . . . . . . . . . 142
83 Impressed Current Cathodic Protection with
Horizontal Anodes for On-Grade Storage Tank - New
Installation . . . . . . . . . . . . . . . . . . . . . . . 143
84 On-Grade Fresh Water Tank Using Suspended Anodes . . . . . . 144
85 Open Water Box Cooler . . . . . . . . . . . . . . . . . . . . 144
86 Horizontal Hot Water Tank - Magnesium Anode
Installation . . . . . . . . . . . . . . . . . . . . . . . 145
87 Impressed Current Cathodic Protection System for
Sheet Piling for Wharf Construction . . . . . . . . . . . . 146
88 Suspended Anode Cathodic Protection for H-Piling
in Seawater . . . . . . . . . . . . . . . . . . . . . . . . . 146
89 Cathodic Protection for H-Piling in Seawater . . . . . . . . 147
90 Cellular Earth Fill Pier Supports . . . . . . . . . . . . . . 148
91 Elevated Fresh Water Tank Using Suspended Anodes . . . . . . 149
92 Cathodic Protection of Tanks using Rigid
Floor-Mounted Anodes . . . . . . . . . . . . . . . . . . . 150
93 Cathodic Protection of Hydraulic Elevator
Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . 151
94 Hydraulic Hoist Cylinder . . . . . . . . . . . . . . . . . . 152
95 Typical Cathodic Protection of Underground Tank
Farm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
96 Gasoline Service Station System . . . . . . . . . . . . . . . 154
97 Segmented Elevated Tank for Area Calculations . . . . . . . . 157
98 Anode Spacing for Elevated Steel Water Tank . . . . . . . . . 160
99 Anode Suspension Arrangement for Elevated
Steel Water Tank . . . . . . . . . . . . . . . . . . . . . 162
100 Equivalent Diameter for Anodes in a
Circle in Water Tank . . . . . . . . . . . . . . . . . . . 163
101 Fringe Factor for Stub Anodes . . . . . . . . . . . . . . . . 164
102 Elevated Steel Water Tank Showing Rectifier and
Anode Arrangement . . . . . . . . . . . . . . . . . . . . . 172
103 Hand Hole and Anode Suspension Detail for
Elevated Water Tank . . . . . . . . . . . . . . . . . . . . . . . . . 174
104 Riser Anode Suspension Detail for Elevated Water
Tank . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
105 Dimensions: Elevated Steel Water Tank . . . . . . . . . . . 175
106 Cathodic Protection for Tanks Using Rigid Mounted . . . . . . 178
Button-Type Anodes and Platinized Titanium Wire
107 Cathodic Protection System for Gas Main . . . . . . . . . . . 179
108 Layout of Gas Piping in Residential District . . . . . . . . 184
109 Cathodic Protection for Black Iron, Hot Water
Storage Tank . . . . . . . . . . . . . . . . . . . . . . . . 187
110 Galvanic Anode Cathodic Protection of
Underground Steel Storage Tank . . . . . . . . . . . . . . . 191
111 Impressed Current Cathodic Protection for
Heating Conduit System . . . . . . . . . . . . . . . . . . . . . . . . 193
112 Galvanic Anode Cathodic Protection for Hydrant
Refueling System . . . . . . . . . . . . . . . . . . . . . . 197
113 Galvanic Anode Cathodic Protection System for
Steel Sheet Piling Bulkhead . . . . . . . . . . . . . . . . . 200
114 Impressed Current Cathodic Protection System
for Steel Sheet Piling Bulkhead . . . . . . . . . . . . . . . 207
115 Pier Supported by H Piling for Para. 9.12 . . . . . . . . . . 208
116 Test Station for Under-Road Casing Isolation . . . . . . . . 215
117 Vertical Sacrificial Anode Installation . . . . . . . . . . . 217
118 Horizontal Sacrificial Anode Installation When
Obstruction is Encountered . . . . . . . . . . . . . . . . 218
119 Horizontal Sacrificial Anode Installation -
Limited Right-of-Way . . . . . . . . . . . . . . . . . . . 218
120 Vertical HSCBCI Anode Installation . . . . . . . . . . . . . 220
121 Vertical HSCBCI Anode Installation With Packaged
Backfill . . . . . . . . . . . . . . . . . . . . . . . . . 221
122 Horizontal HSCBCI Anode Installation . . . . . . . . . . . . 222
123 Typical Deep Well Anode Cathodic Protection
Installation . . . . . . . . . . . . . . . . . . . . . . . 223
124 Deep Anode Installation Details . . . . . . . . . . . . . . . 224
125 Typical Pole-Mounted Cathodic Protection
Rectifier Installation . . . . . . . . . . . . . . . . . . 226
126 Typical Pad-Mounted Cathodic Protection
Rectifier Installation . . . . . . . . . . . . . . . . . . 227
127 Form for Recording and Reporting Monthly
Rectifier Readings . . . . . . . . . . . . . . . . . . . . . 233
128 Form for Recording and Reporting Quarterly
Structure-to-Electrode Potentials . . . . . . . . . . . . 234
TABLES
Table 1 Current Requirements for Cathodic Protection of
Bare Steel . . . . . . . . . . . . . . . . . . . . . . . . . 20
2 Current Requirements for Cathodic Protection of
Coated Steel . . . . . . . . . . . . . . . . . . . . . . . 21
3 Galvanic Anode Size Factors . . . . . . . . . . . . . . . . . 25
4 Structure Potential Factor . . . . . . . . . . . . . . . . . 26
5 Adjusting Factor for Multiple Anodes (F) . . . . . . . . . . 27
6 Corrections Factors - Short Line Coating Conductance . . . . 33
7 Results of Structure-to-Electrolyte
Potential Measurements . . . . . . . . . . . . . . . . . . 43
8 Standard HSCBCI Anodes . . . . . . . . . . . . . . . . . . . 80
9 Special HSCBCI Anodes . . . . . . . . . . . . . . . . . . . . 82
10 Standard Wire Characteristics . . . . . . . . . . . . . . . . 92
11 M Factors for Determining Economic Wire Size
(Cost of losses in 100 feet of copper cable
at 1 cent per kWhr) . . . . . . . . . . . . . . . . . . . . 95
12 Standard Alloy Magnesium Anodes - Standard
Sizes for Use in Soil . . . . . . . . . . . . . . . . . . . 120
13 Standard Alloy Magnesium Anodes - Standard
Sizes for Use in Water . . . . . . . . . . . . . . . . . . 121
14 Standard Alloy Magnesium Anodes -Standard
Sizes for Condensors and Heat Exchangers . . . . . . . . . 121
15 Standard Alloy Magnesium Anodes - Elongated . . . . . . . . . 122
16 High Potential Alloy Magnesium Anodes - Standard
Sizes for Soil and Water . . . . . . . . . . . . . . . . . 122
17 Standard Alloy Magnesium Anodes - Standard Size
Extruded Rod for Water Tanks and Water Heaters . . . . . . 123
18 Zinc Anodes - Standard Sizes for Underground or
Fresh Water . . . . . . . . . . . . . . . . . . . . . . . . 123
19 Zinc Anodes - Special Sizes for Underground or
Fresh Water . . . . . . . . . . . . . . . . . . . . . . . . 124
20 Zinc Anodes - Standard Sizes for Use in Seawater . . . . . . 124
21 Zinc Anodes - Special Sizes for Use in Seawater . . . . . . . 125
22 Aluminum Pier and Piling Anodes - Standard Sizes . . . . . . 128
23 Type I Aluminum Alloy Anodes - Standard Sizes
for Offshore Use . . . . . . . . . . . . . . . . . . . . . 129
24 Type III Aluminum Alloy Anodes for Offshore Use . . . . . . . 130
25 Aluminum Alloy Hull Anodes - Standard Sizes
(Types I, II, and III) . . . . . . . . . . . . . . . . . . 132
26 Aluminum Alloy Bracelet Anode - Standard Sizes . . . . . . . 133
27 Technical Data - Commonly Used HSCBCI Anodes . . . . . . . . 161
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
GLOSSARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Read More !
Free Download it !

Free Download & Buy Online via Secure Paypal 
or Fill Order Form for Alternative.

Soldering_ Brazing & Welding-A Manual of Techniques - D. Pritchard

Soldering_ Brazing & Welding-A Manual of Techniques - D. Pritchard

Soldering_ Brazing & Welding-A Manual of Techniques - D. Pritchard

TOC

what is welding ?
Non fusion joining methods
oxy-acetylene welding
manual metal are welding
mig welding
tig welding
welding other metals
distortion control
quality in welding


Free Download & Buy Online via Secure Paypal 
or Fill Order Form for Alternative.

Mechanical Engineer's Handbook by Dan B. Marghitu

Dan B. Marghitu Mechanical Engineers Handbook (marinenotesonline)

Dan B. Marghitu Mechanical Engineers Handbook (marinenotesonline)
Mechanical Engineer's Handbook by Dan B. Marghitu
Department of Mechanical Engineering, Auburn University,
Auburn, Alabama

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

CHAPTER 1 Statics
Dan B. Marghitu, Cristian I. Diaconescu, and Bogdan O. Ciocirlan
1. Vector Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Terminology and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Product of a Vector and a Scalar . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Zero Vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Unit Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Vector Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Resolution of Vectors and Components . . . . . . . . . . . . . . . . . . 6
1.8 Angle between Two Vectors . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.9 Scalar (Dot) Product of Vectors . . . . . . . . . . . . . . . . . . . . . . . 9
1.10 Vector (Cross) Product of Vectors . . . . . . . . . . . . . . . . . . . . . . 9
1.11 Scalar Triple Product of Three Vectors . . . . . . . . . . . . . . . . . . 11
1.12 Vector Triple Product of Three Vectors . . . . . . . . . . . . . . . . . . 11
1.13 Derivative of a Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2. Centroids and Surface Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Position Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 First Moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Centroid of a Set of Points . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Centroid of a Curve, Surface, or Solid . . . . . . . . . . . . . . . . . . . 15
2.5 Mass Center of a Set of Particles . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Mass Center of a Curve, Surface, or Solid . . . . . . . . . . . . . . . . 16
2.7 First Moment of an Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8 Theorems of Guldinus±Pappus . . . . . . . . . . . . . . . . . . . . . . . 21
2.9 Second Moments and the Product of Area . . . . . . . . . . . . . . . . 24
2.10 Transfer Theorem or Parallel-Axis Theorems . . . . . . . . . . . . . . 25
2.11 Polar Moment of Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.12 Principal Axes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3. Moments and Couples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1 Moment of a Bound Vector about a Point . . . . . . . . . . . . . . . . 30
3.2 Moment of a Bound Vector about a Line . . . . . . . . . . . . . . . . . 31
3.3 Moments of a System of Bound Vectors . . . . . . . . . . . . . . . . . 32
3.4 Couples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Representing Systems by Equivalent Systems . . . . . . . . . . . . . . 36

4. Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1 Equilibrium Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Supports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Free-Body Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5. Dry Friction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1 Static Coef®cient of Friction . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Kinetic Coef®cient of Friction . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Angles of Friction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

CHAPTER 2 Dynamics
Dan B. Marghitu, Bogdan O. Ciocirlan, and Cristian I. Diaconescu
1. Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.1 Space and Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.2 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1.3 Angular Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2. Kinematics of a Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.1 Position, Velocity, and Acceleration of a Point. . . . . . . . . . . . . . 54
2.2 Angular Motion of a Line. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3 Rotating Unit Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.4 Straight Line Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.5 Curvilinear Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.6 Normal and Tangential Components . . . . . . . . . . . . . . . . . . . . 59
2.7 Relative Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3. Dynamics of a Particle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.1 Newton's Second Law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2 Newtonian Gravitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.3 Inertial Reference Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4 Cartesian Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5 Normal and Tangential Components . . . . . . . . . . . . . . . . . . . . 77
3.6 Polar and Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . . . . 78
3.7 Principle of Work and Energy . . . . . . . . . . . . . . . . . . . . . . . . 80
3.8 Work and Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.9 Conservation of Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.10 Conservative Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.11 Principle of Impulse and Momentum. . . . . . . . . . . . . . . . . . . . 87
3.12 Conservation of Linear Momentum . . . . . . . . . . . . . . . . . . . . . 89
3.13 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.14 Principle of Angular Impulse and Momentum . . . . . . . . . . . . . . 94

4. Planar Kinematics of a Rigid Body . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.1 Types of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2 Rotation about a Fixed Axis . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3 Relative Velocity of Two Points of the Rigid Body . . . . . . . . . . . 97
4.4 Angular Velocity Vector of a Rigid Body. . . . . . . . . . . . . . . . . . 98
4.5 Instantaneous Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.6 Relative Acceleration of Two Points of the Rigid Body . . . . . . . 102
4.7 Motion of a Point That Moves Relative to a Rigid Body . . . . . . 103

5. Dynamics of a Rigid Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.1 Equation of Motion for the Center of Mass. . . . . . . . . . . . . . . 111
5.2 Angular Momentum Principle for a System of Particles. . . . . . . 113
5.3 Equation of Motion for General Planar Motion . . . . . . . . . . . . 115
5.4 D'Alembert's Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

CHAPTER 3 Mechanics of Materials
Dan B. Marghitu, Cristian I. Diaconescu, and Bogdan O. Ciocirlan
1. Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
1.1 Uniformly Distributed Stresses . . . . . . . . . . . . . . . . . . . . . . . 120
1.2 Stress Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
1.3 Mohr's Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
1.4 Triaxial Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
1.5 Elastic Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
1.6 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
1.7 Shear and Moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
1.8 Singularity Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
1.9 Normal Stress in Flexure. . . . . . . . . . . . . . . . . . . . . . . . . . . 135
1.10 Beams with Asymmetrical Sections . . . . . . . . . . . . . . . . . . . . 139
1.11 Shear Stresses in Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
1.12 Shear Stresses in Rectangular Section Beams . . . . . . . . . . . . . 142
1.13 Torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
1.14 Contact Stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

2. De¯ection and Stiffness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
2.1 Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
2.2 Spring Rates for Tension, Compression, and Torsion . . . . . . . . 150
2.3 De¯ection Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
2.4 De¯ections Analysis Using Singularity Functions . . . . . . . . . . . 153
2.5 Impact Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
2.6 Strain Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
2.7 Castigliano's Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
2.8 Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
2.9 Long Columns with Central Loading . . . . . . . . . . . . . . . . . . . 165
2.10 Intermediate-Length Columns with Central Loading. . . . . . . . . 169
2.11 Columns with Eccentric Loading . . . . . . . . . . . . . . . . . . . . . 170
2.12 Short Compression Members . . . . . . . . . . . . . . . . . . . . . . . . 171

3. Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
3.1 Endurance Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
3.2 Fluctuating Stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
3.3 Constant Life Fatigue Diagram . . . . . . . . . . . . . . . . . . . . . . . 178
3.4 Fatigue Life for Randomly Varying Loads . . . . . . . . . . . . . . . . 181
3.5 Criteria of Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Theory of Mechanisms
Dan B. Marghitu
1. Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
1.1 Motions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
1.2 Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
1.3 Kinematic Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
1.4 Number of Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . 199
1.5 Planar Mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

2. Position Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
2.1 Cartesian Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
2.2 Vector Loop Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

3. Velocity and Acceleration Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 211
3.1 Driver Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
3.2 RRR Dyad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
3.3 RRT Dyad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
3.4 RTR Dyad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
3.5 TRT Dyad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

4. Kinetostatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
4.1 Moment of a Force about a Point . . . . . . . . . . . . . . . . . . . . . 223
4.2 Inertia Force and Inertia Moment . . . . . . . . . . . . . . . . . . . . . 224
4.3 Free-Body Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
4.4 Reaction Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
4.5 Contour Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

CHAPTER 5 Machine Components
Dan B. Marghitu, Cristian I. Diaconescu, and Nicolae Craciunoiu
1. Screws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
1.1 Screw Thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
1.2 Power Screws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

2. Gears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
2.2 Geometry and Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . 253
2.3 Interference and Contact Ratio . . . . . . . . . . . . . . . . . . . . . . . 258
2.4 Ordinary Gear Trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
2.5 Epicyclic Gear Trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
2.6 Differential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
2.7 Gear Force Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
2.8 Strength of Gear Teeth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

3. Springs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
3.2 Material for Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
3.3 Helical Extension Springs . . . . . . . . . . . . . . . . . . . . . . . . . . 284
3.4 Helical Compression Springs . . . . . . . . . . . . . . . . . . . . . . . . 284
3.5 Torsion Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
3.6 Torsion Bar Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
3.7 Multileaf Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
3.8 Belleville Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

4. Rolling Bearings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
4.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
4.2 Classi®cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
4.3 Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
4.4 Static Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
4.5 Standard Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
4.6 Bearing Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

5. Lubrication and Sliding Bearings. . . . . . . . . . . . . . . . . . . . . . . . . . 318
5.1 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
5.2 Petroff's Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
5.3 Hydrodynamic Lubrication Theory . . . . . . . . . . . . . . . . . . . . 326
5.4 Design Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

CHAPTER 6 Theory of Vibration
Dan B. Marghitu, P. K. Raju, and Dumitru Mazilu

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

2. Linear Systems with One Degree of Freedom . . . . . . . . . . . . . . . . . 341
2.1 Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
2.2 Free Undamped Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . 343
2.3 Free Damped Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
2.4 Forced Undamped Vibrations . . . . . . . . . . . . . . . . . . . . . . . 352
2.5 Forced Damped Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . 359
2.6 Mechanical Impedance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
2.7 Vibration Isolation: Transmissibility. . . . . . . . . . . . . . . . . . . . 370
2.8 Energetic Aspect of Vibration with One DOF . . . . . . . . . . . . . 374
2.9 Critical Speed of Rotating Shafts. . . . . . . . . . . . . . . . . . . . . . 380

3. Linear Systems with Finite Numbers of Degrees of Freedom . . . . . . . 385
3.1 Mechanical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
3.2 Mathematical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
3.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
3.4 Analysis of System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 405
3.5 Approximative Methods for Natural Frequencies. . . . . . . . . . . 407

4. Machine-Tool Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
4.1 The Machine Tool as a System . . . . . . . . . . . . . . . . . . . . . . 416
4.2 Actuator Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
4.3 The Elastic Subsystem of a Machine Tool . . . . . . . . . . . . . . . 419
4.4 Elastic System of Machine-Tool Structure . . . . . . . . . . . . . . . . 435
4.5 Subsystem of the Friction Process. . . . . . . . . . . . . . . . . . . . . 437
4.6 Subsystem of Cutting Process . . . . . . . . . . . . . . . . . . . . . . . 440
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

CHAPTER 7 Principles of Heat Transfer
Alexandru Morega
1. Heat Transfer Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 446
1.1 Physical Mechanisms of Heat Transfer: Conduction, Convection,
and Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

4. Rolling Bearings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
4.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
4.2 Classi®cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
4.3 Geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
4.4 Static Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
4.5 Standard Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
4.6 Bearing Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

5. Lubrication and Sliding Bearings. . . . . . . . . . . . . . . . . . . . . . . . . . 318
5.1 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
5.2 Petroff's Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
5.3 Hydrodynamic Lubrication Theory . . . . . . . . . . . . . . . . . . . . 326
5.4 Design Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

CHAPTER 6 Theory of Vibration
Dan B. Marghitu, P. K. Raju, and Dumitru Mazilu
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
2. Linear Systems with One Degree of Freedom . . . . . . . . . . . . . . . . . 341
2.1 Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
2.2 Free Undamped Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . 343
2.3 Free Damped Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
2.4 Forced Undamped Vibrations . . . . . . . . . . . . . . . . . . . . . . . 352
2.5 Forced Damped Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . 359
2.6 Mechanical Impedance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
2.7 Vibration Isolation: Transmissibility. . . . . . . . . . . . . . . . . . . . 370
2.8 Energetic Aspect of Vibration with One DOF . . . . . . . . . . . . . 374
2.9 Critical Speed of Rotating Shafts. . . . . . . . . . . . . . . . . . . . . . 380
3. Linear Systems with Finite Numbers of Degrees of Freedom . . . . . . . 385
3.1 Mechanical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
3.2 Mathematical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
3.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
3.4 Analysis of System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 405
3.5 Approximative Methods for Natural Frequencies. . . . . . . . . . . 407
4. Machine-Tool Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
4.1 The Machine Tool as a System . . . . . . . . . . . . . . . . . . . . . . 416
4.2 Actuator Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
4.3 The Elastic Subsystem of a Machine Tool . . . . . . . . . . . . . . . 419
4.4 Elastic System of Machine-Tool Structure . . . . . . . . . . . . . . . . 435
4.5 Subsystem of the Friction Process. . . . . . . . . . . . . . . . . . . . . 437
4.6 Subsystem of Cutting Process . . . . . . . . . . . . . . . . . . . . . . . 440
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

CHAPTER 7 Principles of Heat Transfer
Alexandru Morega
1. Heat Transfer Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 446
1.1 Physical Mechanisms of Heat Transfer: Conduction, Convection,
and Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
Table of Contents ix
1.2 Technical Problems of Heat Transfer . . . . . . . . . . . . . . . . . . . 455
2. Conduction Heat Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
2.1 The Heat Diffusion Equation . . . . . . . . . . . . . . . . . . . . . . . . 457
2.2 Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
2.3 Initial, Boundary, and Interface Conditions . . . . . . . . . . . . . . . 461
2.4 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
2.5 Steady Conduction Heat Transfer . . . . . . . . . . . . . . . . . . . . . 464
2.6 Heat Transfer from Extended Surfaces (Fins) . . . . . . . . . . . . . 468
2.7 Unsteady Conduction Heat Transfer . . . . . . . . . . . . . . . . . . . 472
3. Convection Heat Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
3.1 External Forced Convection . . . . . . . . . . . . . . . . . . . . . . . . . 488
3.2 Internal Forced Convection . . . . . . . . . . . . . . . . . . . . . . . . . 520
3.3 External Natural Convection. . . . . . . . . . . . . . . . . . . . . . . . . 535
3.4 Internal Natural Convection . . . . . . . . . . . . . . . . . . . . . . . . . 549
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555

CHAPTER 8 Fluid Dynamics
Nicolae Craciunoiu and Bogdan O. Ciocirlan
1. Fluids Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
1.1 De®nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
1.2 Systems of Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
1.3 Speci®c Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
1.4 Viscosity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
1.5 Vapor Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
1.6 Surface Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
1.7 Capillarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
1.8 Bulk Modulus of Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . 562
1.9 Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
1.10 Hydrostatic Forces on Surfaces . . . . . . . . . . . . . . . . . . . . . . . 564
1.11 Buoyancy and Flotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
1.12 Dimensional Analysis and Hydraulic Similitude . . . . . . . . . . . . 565
1.13 Fundamentals of Fluid Flow. . . . . . . . . . . . . . . . . . . . . . . . . 568
2. Hydraulics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
2.1 Absolute and Gage Pressure . . . . . . . . . . . . . . . . . . . . . . . . 572
2.2 Bernoulli's Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
2.3 Hydraulic Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
2.4 Pressure Intensi®ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
2.5 Pressure Gages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
2.6 Pressure Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
2.7 Flow-Limiting Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
2.8 Hydraulic Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
2.9 Hydraulic Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598
2.10 Accumulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
2.11 Accumulator Sizing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
2.12 Fluid Power Transmitted . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
2.13 Piston Acceleration and Deceleration. . . . . . . . . . . . . . . . . . . 604
2.14 Standard Hydraulic Symbols . . . . . . . . . . . . . . . . . . . . . . . . 605
2.15 Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
2.16 Representative Hydraulic System . . . . . . . . . . . . . . . . . . . . . 607
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610

CHAPTER 9 Control
Mircea Ivanescu
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612
1.1 A Classic Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
2. Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
3. Transfer Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616
3.1 Transfer Functions for Standard Elements . . . . . . . . . . . . . . . 616
3.2 Transfer Functions for Classic Systems . . . . . . . . . . . . . . . . . 617
4. Connection of Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
5. Poles and Zeros. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
6. Steady-State Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
6.1 Input Variation Steady-State Error . . . . . . . . . . . . . . . . . . . . . 623
6.2 Disturbance Signal Steady-State Error . . . . . . . . . . . . . . . . . . 624
7. Time-Domain Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
8. Frequency-Domain Performances . . . . . . . . . . . . . . . . . . . . . . . . . 631
8.1 The Polar Plot Representation . . . . . . . . . . . . . . . . . . . . . . . 632
8.2 The Logarithmic Plot Representation. . . . . . . . . . . . . . . . . . . 633
8.3 Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637
9. Stability of Linear Feedback Systems . . . . . . . . . . . . . . . . . . . . . . . 639
9.1 The Routh±Hurwitz Criterion . . . . . . . . . . . . . . . . . . . . . . . . 640
9.2 The Nyquist Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
9.3 Stability by Bode Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 648
10. Design of Closed-Loop Control Systems by Pole-Zero Methods . . . . . 649
10.1 Standard Controllers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650
10.2 P-Controller Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 651
10.3 Effects of the Supplementary Zero . . . . . . . . . . . . . . . . . . . . 656
10.4 Effects of the Supplementary Pole . . . . . . . . . . . . . . . . . . . . 660
10.5 Effects of Supplementary Poles and Zeros . . . . . . . . . . . . . . . 661
10.6 Design Example: Closed-Loop Control of a Robotic Arm . . . . . 664
11. Design of Closed-Loop Control Systems by Frequential Methods . . . . 669
12. State Variable Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
13. Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678
13.1 Nonlinear Models: Examples . . . . . . . . . . . . . . . . . . . . . . . . 678
13.2 Phase Plane Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681
13.3 Stability of Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . 685
13.4 Liapunov's First Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 688
13.5 Liapunov's Second Method . . . . . . . . . . . . . . . . . . . . . . . . . 689
14. Nonlinear Controllers by Feedback Linearization . . . . . . . . . . . . . . . 691
15. Sliding Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695
15.1 Fundamentals of Sliding Control . . . . . . . . . . . . . . . . . . . . . 695
15.2 Variable Structure Systems . . . . . . . . . . . . . . . . . . . . . . . . . 700
A. Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
A.1 Differential Equations of Mechanical Systems . . . . . . . . . . . . . 703
A.2 The Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707
A.3 Mapping Contours in the s-Plane . . . . . . . . . . . . . . . . . . . . . 707
A.4 The Signal Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 712
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714

APPENDIX Differential Equations and Systems of Differential Equations

Horatiu Barbulescu
1. Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716
1.1 Ordinary Differential Equations: Introduction . . . . . . . . . . . . . 716
1.2 Integrable Types of Equations . . . . . . . . . . . . . . . . . . . . . . . 726
1.3 On the Existence, Uniqueness, Continuous Dependence on a
Parameter, and Differentiability of Solutions of Differential
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 766
1.4 Linear Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . 774
2. Systems of Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 816
2.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 816
2.2 Integrating a System of Differential Equations by the
Method of Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819
2.3 Finding Integrable Combinations . . . . . . . . . . . . . . . . . . . . . 823
2.4 Systems of Linear Differential Equations. . . . . . . . . . . . . . . . . 825
2.5 Systems of Linear Differential Equations with Constant
Coef®cients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845
Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847

Read More !
Free Download it !

Free Download & Buy Online via Secure Paypal 
or Fill Order Form for Alternative.

Welding Theory and Application

WELDING THEORY & APPLICATION

TOC of WELDING THEORY & APPLICATION

Table of Contents

CHAPTER 1 - INTRODUCTION
Section I - General
Section II - Theory

CHAPTER 2 - SAFETY PRECAUTIONS IN WELDING OPERATIONS
Section I - General Safety Precautions
Section II - Safety Precautions in Oxyfuel Welding
Section III - Safety in Arc Welding and Cutting
Section IV - Safety Precautions for Gas Shielded Arc Welding
Section V - Safety Precautions for Welding and Cutting Containers That Have Held
Combustibles
Section VI - Safety Precautions for Welding and Cutting Polyurethane Foam Filled
Assemblies

CHAPTER 3 - PRINT READING AND WELDING SYMBOLS
Section I - Print Reading
Section II - Weld and Welding Symbols

CHAPTER 4 - JOINT DESIGN AND PREPARATION OF METALS

CHAPTER 5 - WELDING AND CUTTING EQUIPMENT
Section I - Oxyacetylene Welding Equipment
Section II - Oxyacetylene Cutting Equipment
Section III - Arc Welding Equipment and Accessories
Section IV - Resistance Welding Equipment
Section V - Thermit Welding Equipment
Section VI - Forge Welding Tools and Equipment

CHAPTER 6 - WELDING TECHNIQUES
Section I - Description
Section II - Nomenclature of the Weld
Section III - Types of Welds and Welded Joints
Section IV - Welding Positions
Section V - Expansion and Contraction in Welding Operations
Section VI - Welding Problems and Solutions

CHAPTER 7 - METALS IDENTIFICATION
Section I - Characteristics
Section II - Standard Metal Designations
Section III - General Description and Weldability of Ferrous Metals
Section IV - General Description and Weldability of Nonferrous Metals

CHAPTER 8 - ELECTRODES AND FILLER METALS
Section I - Types of Electrodes
Section II - Other Filler Metals

CHAPTER 9 - MAINTENANCE WELDING OPERATIONS FOR MILITARY EQUIPMENT

CHAPTER 10 - ARC WELDING AND CUTTING PROCESSES
Section I - General
Section II - Arc Processes
Section III - Related Processes

CHAPTER 11 - OXYGEN FUEL GAS WELDING PROCEDURES
Section I - Welding Processes and Techniques
Section II - Welding and Brazing Ferrous Metals
Section III - Related Processes
Section IV - Welding, Brazing, and Soldering Nonferrous Metals

CHAPTER 12 - SPECIAL APPLICATIONS
Section I - Underwater Cutting and Welding with the Electric Arc
Section II - Underwater Cutting with Oxyfuel
Section III - Metallizing
Section IV - Flame Cutting Steel and Cast Iron
Section V - Flame Treating Metal
Section VI - Cutting and Hard Surfacing with the Electric Arc
Section VII - Armor Plate Welding and Cutting
Section VIII - Pipe Welding
Section IX - Welding Cast Iron, Cast Steel, Carbon Steel, and Forgings
Section X - Forge Welding
Section XI - Heat Treatment of Steel
Section XII - Other Welding Processes

CHAPTER 13 - DESTRUCTIVE AND NONDESTRUCTIVE TESTING
Section I - Performance Testing
Section II - Visual Inspection and Corrections
Section III - Physical Testing
APPENDIX A - REFERENCES
APPENDIX B - PROCEDURE GUIDES FOR WELDING
APPENDIX C - TROUBLESHOOTING PROCEDURES
APPENDIX D - MATERIALS USED FOR BRAZING, WELDING, SOLDERING, CUTTING, AND METALLIZING
APPENDIX E - MISCELLANEOUS DATA

GLOSSARY

LIST OF ILLUSTRATIONS

LIST OF TABLES

WARNINGS

Download it for Free !


Free Download & Buy Online via Secure Paypal 
or Fill Order Form for Alternative.

PERSONAL SAFETY ON SHIPS

PERSONAL SAFETY ON SHIPS
PERSONAL SAFETY ON SHIPS…


CONTENTS
Health 2
Working Clothing 3
Protective Clothing & Equipment 4
Fire Precautions & Fire fighting 5
Lifting & Carrying 8
Movement about the ship 9
Access to The ship 10
Entering Enclosed & Confined
Spaces 11
Tools 12
Welding & flame Cutting
Operations 12
Painting 13
Working aloft & outboard 13
Dangerous Cargoes 15
Falling & Moving Objects 16
Mooring 16
Hatches 17
Lifting & Mechanical Appliances 17
Working with Machinery 18

Read More....!
Download for Free on Marine Notes Online
Marine Notes Online: Download For Free on Marine Notes Online
Marine Notes Online Order Form
                              Buy Online via Secure Paypal or Fill Order Form for Alternative.

Personal Protective Equipment (PPE) for Welding and Cutting

Personal Protective Equipment (PPE) for Welding and Cutting
Personal Protective Equipment (PPE) for Welding and Cutting


INTRODUCTION
Like other jobs or careers, welders must wear suitable protective equipment. In general, Personal Protective Equipment  (PPE) must protect against hazards such as burns, sparks, spatter, electric shock,
and radiation. The use of PPE is a good safe practice and may be required by regulatory agencies. For example, OSHA requires the use of PPE when engineering and administrative controls are not feasible 
or effective.

NATURE OF THE HAZARD
Welding and cutting can produce hazards such as sparks, spatter, radiation (infrared, ultraviolet, and blue light), slag, heat, hot metal, fumes and gases, and even electric shock. Since these hazards may cause
burns, injury, or death, it is important to wear proper PPE at all times.

EYE AND FACE PROTECTION
• Wear a helmet with filter lens and cover plate that complies with ANSI  Z87.1 for protection from radiant
energy, flying sparks, and spatter.
• According to ANSI Z49.1 and OSHA 29 CFR 1910.252, "Helmets and hand shields shall protect the face, forehead, neck, and ears to a vertical line in back of the ears, from the direct radiant energy from the
arc and from direct weld spatter."
• Helmets shall be made of material that complies with ANSI Z49.1.
• Filter lenses and cover plates must meet the tests prescribed in ANSI Z87.1.
• Wear approved safety glasses with side shields (or goggles) under your helmet.
• The safety glasses with side shields (or goggles) are used to protect against flying metal, slag chips,
grinding fragments, wire wheel bristles, and similar hazards, which can ricochet under the helmet.
• Choose a filter lens shade according to the Lens Shade Selector Chart in ANSI Z49.1.
• Consult AWS Fact Sheet 31, Eye and Face Protection for Welding and Cutting Operations.


Read More....!
Download for Free on Marine Notes Online
Marine Notes Online: Download For Free on Marine Notes Online
Marine Notes Online Order Form
                            Buy Online via Secure Paypal or Fill Order Form for Alternative.

PERSONAL PROTECTIVE EQUIPMENT PPE

PERSONAL PROTECTIVE EQUIPMENT PPE
PERSONAL PROTECTIVE EQUIPMENT

PPE SELECTION
 Eye and Face Protection – required when exposed to eye or face hazards from flying particles, molten metals, liquid chemicals, corrosives, gases, vapors, or potentially hazardous light radiation. Requirements for side protection, prescription lenses, filter lenses, and identification of manufacturer are detailed in CFR 1910.133. Eye and face PPE must comply with ANSI Z87.1-1989 or be demonstrated to be equally effective. Laser operations require specially designed safety goggles which are specific to the wavelength of light involved.
 Head Protection – Protective helmets are required when working in areas where there is potential for injury to the head from employee-initiated impact or impact from falling or other moving objects. Protective helmets will comply with ANSI Z89.1-1986 or be equally effective.
 Foot Protection – Protective foot wear is required when working in areas where there is a danger of foot injuries due to falling or rolling objects, or from objects piercing the sole, and where employees’ feet are exposed to electrical or chemical hazards. PPE for foot protection must comply with ANSI Z41.1-1991 or be equally effective and appropriate to the hazard. Special types of shoes or foot guards are required when special hazard conditions exist, such as leggings or high boots for hot surfaces/substances, and rubber boots for toxic chemicals.
 Hand Protection – Hand protection is required when employees’ hands are exposed to hazards such as those from skin absorption of harmful chemicals, severe cuts or lacerations, severe abrasions, punctures, chemical burns, and harmful temperature extremes. Supervisors shouldbased the selection of hand protection on the performance characteristics of the hand protection relative to the specific tasks to be performed, conditions present, duration of use, and the hazards or potential hazards identified.
„h Respiratory Protection ¡V Respiratory protection is required when adequate ventilation, substitution of less toxic materials, or other primary control measures is not possible. Respiratory protection must comply with ANSI Z288.2-1969.
„h Fall Protection ¡V Fall protection is required when employees are exposed to a vertical fall of four feet in general industry and six feet or more in construction, over a lower level, or at any height above dangerous equipment. Fall protection must comply with ANSIA10-14-1991 and the provisions of 209 CFR 1010 Subpart D, 1910.132, and 1926.501-502.
„h Electrical Protection ¡V Electrical protective equipment such as insulating blankets, matting, covers, lines, hoses, gloves, and sleeves, is required for employees who are exposed to electrical hazards. Electrical protective equipment will comply with the requirements of 29 CFR 1910.137.
„h Additional Protective Equipment ¡V Additional protective equipment as required will be provided as follows:
o Skin barrier materials such as coverings, ointments, and gloves for employees exposed to corrosive or irritating chemicals.
o Rings, watches, or other personal jewelry is prohibited from areas where employees may contact nip points or moving parts of machinery.
o Clothing that is excessively loose, frayed, or otherwise prone to being caught in the moving parts of machinery is prohibited from the workplace. Chemically-contaminated clothing must be removed.
Read More....!
Download for Free on Marine Notes Online
Marine Notes Online: Download For Free on Marine Notes Online
Marine Notes Online Order Form
                             Buy Online via Secure Paypal or Fill Order Form for Alternative.

 

Blog Archive

Followers

Online Marketing Oferty i praca w Zarabiaj.plglobeofblogs IndiBlogger - The Largest Indian Blogger Community Books Blogs - BlogCatalog Blog DirectoryHobbies Blogs - Blog Rankings Hobbies Blogs - Blog Rankings
MarineNotesOnline Facebook MarineNotesOnline Twitter MarineNotesOnline RSS MarineNotesOnline Facebook MarineNotesOnline Order Marine Notes Online Free Download

QUESTIONS ?

Need Quick Help Support ?
Email: marinenotesonline@gmail.com
Get Access of Books and Notes Easily

Search This Blog

Loading...
Copyright 2010 Marine Notes - All Rights Reserved.